1297: [SCOI2009]迷路
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status][Discuss]Description
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间。
Input
第一行包含两个整数,N T。 接下来有 N 行,每行一个长度为 N 的字符串。 第i行第j列为'0'表示从节点i到节点j没有边。 为'1'到'9'表示从节点i到节点j需要耗费的时间。
Output
包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。
Sample Input
【输入样例一】 2 2 11 00 【输入样例二】 5 30 12045 07105 47805 12024 12345
Sample Output
【输出样例一】 1 【样例解释一】 0->0->1 【输出样例二】 852
HINT
30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。 100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。
题解
首先我们看到T的范围辣么大
再一看求1到n长度为k的路径
这不是明显的矩阵快速幂嘛!
但是问题来了
矩阵快速幂只适用于1的情况,题中边权却不一定为1
这时我们又看到边权属于1到9
那么拆点不就好了么~
把点i拆成i1~i9,然后把每个ii到ii+1连边,边权为1
然后如果i到j有长为x的边,就在ix和j1中间连一条边权为1的边
然后就跑矩阵快速幂就好~
复杂度O((10*n)3*log t)
代码
//by 减维#include#include #include #include #include #include #include #include